122,344 research outputs found

    Persaingan Tanaman Jagung (Zea Mays) dan Rumput Teki (Cyperus Rotundus) pada Pengaruh Cekaman Garam (NaCl)

    Full text link
    Penelitian ini bertujuan untuk mengetahui pertumbuhan Zea mays yang bersaing dengan Cyperus rotundus pada pengaruh cekaman garam (NaCl).Metode yang digunakan replacement series menggunakan rancangan acak lengkap dengan 3 ulangan. Dengan perlakuan cekaman garam (NaCl) 0ppm, 500ppm, 1000ppm, dan 1500ppm. Hasil penelitian menunjukkan bahwa pada kultur tunggal terjadi persaingan intraspesies antara Zea mays maupun Cyperus rotundus sedangkan pada kultur campuran terjadi persaingan interspesies antara Zea mays dan Cyperus rotundus. Pada (0ppm) dan (500ppm) Cyperus rotundus lebih dominan dari pada Zea mays.Pada (1500ppm) Zea mays lebih dominan dari pada Cyperus rotundus.Sedangkan pada (1000ppm) Zea mays dan Cyperus rotundus terhambat pertumbuhannya

    Penerapan Metode Forward Chaining Untuk Diagnosa Hama dan Penyakit Zea Mays Indentata

    Get PDF
    Tanaman jagung berasal dari daratan Amerika dan menyebar ke daerah sub-tropis dan tropis termasuk Indonesia. Berdasarkan bentuk biji dan kandungan endospermanya, jagung dikelompokkan menjadi tujuh jenis. Jenis atau tipe jagung di tersebut adalah : (1) Jagung gigi kuda (Zea mays indentata), (2) Jagung mutiara (Zea mays indurata), (3) Jagung bertepung (Zea mays amylacia), (4) jagung brondong (Zea mays everta), (5) Jagung manis (Zea mays sachrata), (6) Jagung berlilin (Zea mays ceratina) dan (7) Jagung polong (Zea mays aunicula). Metode Forward Chaining ini dipilih karena metode ini menentukan hama dan penyakit yang berpengaruh dengan proses pertanyaan dengan gejala yang akan menyeleksi solusi terbaik dari sejumlah solusi. Solusi yang dimaksud adalah penanganan hama dan penyakit berdasarkan faktor yang dipengaruhi jenis hama dan penyakit yang terdapat dalam sistem pakar. Hama dan penyakit dalam sistem pakar terdiri dari hama dan penyakit busuk batang, ulat grayap, kutu daun, bulai dan  tikus. Aplikasi dapat digunakan oleh Petani Jagung yang sedang mengalami gejala-gejala hama dan penyakit tanaman jagung gigi kuda (zea mays indentata). Aplikasi juga dapat digunakan oleh penyuluh pertanian untuk menentukan aturan penalaran. Aplikasi ini hanya untuk mengetahui diagnosa tanaman jagung gigi kuda (zea mays indentata) dengan menjawab pertanyaan-pertanyaan yang sesuai dengan gejala-gejala yang diderita tanaman jagung gigi kuda (zea mays indentata)

    Genetic variation and relationships of Zea mays and Sorghum species using RAPD-PCR and

    Get PDF
    Genetic relationship between some species of Zea mays and Sorghum was determined using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) of seed protein and random amplification of polymorphic DNA (RAPD-PCR) markers. According to SDS-PAGE analysis, 78 band were identified across the studied species. The number of bands varies from 17 bands in sample number 5 to 6 in sample number 6. Analysis of RAPD-PCR of DNA provided more precise information concerning relationships between Zea mays and Sorghum species than SDS-PAGE analysis. A remarkable result from this study was identifying a close relationship between Zea mays spp mays and Zea mays spp Mexicana. Further support comes from the molecular data of RAPD, which indicate that close relationship between Sorghum valgare and Sorghum bicolor.Keywords: Zea mays, Sorgum volgare pres, Punciu milia ceaum L. protein, random amplification of polymorphic DNA.African Journal of Biotechnology Vol. 12(27), pp. 4269-427

    Susceptibility of maize varieties to opposite mating type strains of Fusarium verticillioides

    Get PDF
    Fusarium verticillioides the causal agent of maize ear rot is world wide distributed heterothalic species with dimictic mating system of reproduction. Presented paper summarizes results of fourth years (2007 – 2010) field studies analyzing disease severity of maize plant after inoculation with opposite mating type strains of the fungus. Genotypes of fourth maize cultivars (Zea mays var indentata, Zea mays var indurata, Zea mays var everta and Zea mays var saccharata) were inoculated with two F. verticillioides isolates KFI 2856 and KFI 3011 representing respectively MAT1-1 and MAT1-2 subpopulation of the species. Infection degree was evaluated using six degree (0 – 5) rating scale at seven days intervals after inoculation. Obtained results revealed that mating type of analyzed species had not significant impact on maize ear infection in any of growing seasons. Reaction of particular maize varieties against ear rot due to F. verticillioides in particular years were stable. The lowest infection degree exhibited plants of Zea mays var everta while the highest susceptibility Zea mays var saccharata. Regardless of cropping seasons significantly less was affected genotypes of sweet maize (Su1) than super sweet (Sh2)

    RAPD and Internal Transcribed Spacer Sequence Analyses Reveal Zea nicaraguensis as a Section Luxuriantes Species Close to Zea luxurians

    Get PDF
    Genetic relationship of a newly discovered teosinte from Nicaragua, Zea nicaraguensis with waterlogging tolerance, was determined based on randomly amplified polymorphic DNA (RAPD) markers and the internal transcribed spacer (ITS) sequences of nuclear ribosomal DNA using 14 accessions from Zea species. RAPD analysis showed that a total of 5,303 fragments were produced by 136 random decamer primers, of which 84.86% bands were polymorphic. RAPD-based UPGMA analysis demonstrated that the genus Zea can be divided into section Luxuriantes including Zea diploperennis, Zea luxurians, Zea perennis and Zea nicaraguensis, and section Zea including Zea mays ssp. mexicana, Zea mays ssp. parviglumis, Zea mays ssp. huehuetenangensis and Zea mays ssp. mays. ITS sequence analysis showed the lengths of the entire ITS region of the 14 taxa in Zea varied from 597 to 605 bp. The average GC content was 67.8%. In addition to the insertion/deletions, 78 variable sites were recorded in the total ITS region with 47 in ITS1, 5 in 5.8S, and 26 in ITS2. Sequences of these taxa were analyzed with neighbor-joining (NJ) and maximum parsimony (MP) methods to construct the phylogenetic trees, selecting Tripsacum dactyloides L. as the outgroup. The phylogenetic relationships of Zea species inferred from the ITS sequences are highly concordant with the RAPD evidence that resolved two major subgenus clades. Both RAPD and ITS sequence analyses indicate that Zea nicaraguensis is more closely related to Zea luxurians than the other teosintes and cultivated maize, which should be regarded as a section Luxuriantes species

    Spontaneous Hybridization between Maize and Teosinte

    Get PDF
    The closest wild relatives of maize, Zea mays ssp. mays are various Zea taxa known as "teosinte.” Hybrids between maize and the teosinte taxon, Zea mays ssp. mexicana, often occur when the 2 are sympatric in Mexico. Measuring the spontaneous hybridization rate of the 2 taxa would shed light on the mechanisms contributing to the evolution and persistence of these hybrid swarms. We conducted a series of field experiments in Riverside, CA, to measure the natural hybridization rates between maize and 2 teosinte taxa, Z. m. ssp. mexicana and Zea mays ssp. parviglumis. We planted teosinte within and near maize plantations. Hybrids were identified by progeny testing for a maize-specific herbicide resistance allele and a teosinte-specific allozyme allele. Hybridity was confirmed by growing putative hybrid progeny to maturity to evaluate whether they had the characteristic morphology of maize × teosinte hybrids. We found that maize and Z. m. ssp. mexicana naturally hybridize at a low rate (<1%), whereas Z. m. ssp. parviglumis hybridizes with the crop at a high rate (≫50%

    Zea mays plant as a suitable phytoremediator for soil matrix contaminated with cadmium

    Get PDF
    As a green technique for environmental protection and  sustainability, Zea mays capacity to bioaccumulate cadmium was studied. The impacts of cadmium on some plant growth  parameters such as vine length, leaf area, fresh shoot weight and fresh root weight were monitored for the Zea mays over a period of 28days. It was observed that the level of cadmium (Cd) sorbed by the Zea mays seedling increased with increase in cadmium (Cd) load in the soil material. The uptake efficiency which ranged from 24.8-54.6% decreases with increase in the cadmium level in the soil. The plant was more sensitive to cadmium stress at the early stage of development (7day old seedlings) than at later stage (21day old seedlings) though, germination rate was not  significantly affected by cadmium stress. Biomass production as well as the leaf area was not significantly affected by the cadmium stress on the maize seedlings. It was also observed that amount of cadmium translocated to the shoot was three times the amount accumulated at the root hence, little or no potential effect on the crop yield and quality. Zea mays may be used as phytoremediator for soil contaminated with cadmium.Key Words: Zea mays, growth parameters, phytotoxicity, uptake efficiency and cadmiu

    Uji Aktivitas Antioksidan Ekstrak Etanol Rambut Jagung (Zea mays L.) dengan Menggunakan Metode 2,2-difenil-1-pikrilhidrazil (DPPH)

    Get PDF
    ABSTRAKPengujian aktivitas antioksidan pada ekstrak etanol Rambut Jagung (Zea Mays L.) yang telah dilakukan dengan menggunakan metode DPPH (2,2-difenil-1-pikrilhidrazil). Sebagai kontrol positif digunakan vitamin C. Ekstrak etanol  diperoleh dengan metode maserasi. Aktivitas antioksidan sampel ditentukan oleh besarnya persentase peredaman radikal DPPH. Ekstrak etanol rambut jagung memiliki aktivitas antioksidan lebih tinggi dibanding dengan vitamin C sebesar 7,73 ppm dan masuk dalam kategori sangat kuat. Kata kunci : DPPH, Rambut Jagung, Uji Aktvitas Antioksidan, (Zea mays L.). ABSTRACTThe antioxidant activity test of ethanol corn hair (Zea Mays L.) extract has been done by using DPPH (2,2-diphenyl-1-picrylhydrazyl). As a positive control used vitamin C. The ethanol extract is obtained by maceration method. The antioxidant activity of the sample is determined by the percentage of DPPH radical reduction. Ethanol corn hair extract has higher antioxidant activity than vitamin C at 7.73 ppm and in the category of very strong.Keywords: Antioxidant Activity Test, DPPH, Hair Corn, (Zea mays L.)

    Effect of chelating agents on phytoextraction of Ni from contaminated Soil by Zea mays

    Get PDF
    The effects of application of CDTA, (CA), DTPA, NTA and FYM on the growth of Zea mays and its Ni uptake and accumulation were investigated using the pot-culture experiments. Application of chelating agents decreased the dry matter yield of roots of Zea mays while, higher values of dry matter yield (11.35 g pot-1) was observedin case of FYM sewage sludge amended soil at 80 days after sowing. FYM addition was found beneficial as compared to control (Ni90). Dry matter yield of shoots of Zea mays increased over control due to application of CDTA and FYM. The highest value of dry matter yield of shoot (86.05 g pot-1) was observed in case of CDTA withsewage sludge amended soil at 80 days after sowing. Whereas reverse trend was observed in NTA, CA and DTPA treated soils. Chelating agents enhanced the Ni uptake by both roots and shoots, higher values of Ni uptake by roots (3415.44 ?g pot-1 ) and shoots (10104.98 ?g pot-1 ) Was observed in NTA and CDTA treated soil after 80 days of sowing in amended as compared to sewage sludge unamended soil. Application of CDTA followed by NTA was found more effective in enhancing the Ni uptake by Zea mays roots and shoots than any other chelating agents at both the growth stages. The chelating agents are found useful in enhancing phytoextractability of Ni by Zea mays. Hence, marginally Ni contaminated soil may be remediated by adding chelating agents

    Cryptic homoelogy analysis in species and hybrids of genus Zea

    Full text link
    Cryptic intergenomic pairing of genus Zea was induced by the use of a diluted colchicine solution in order to elucidate the phylogenetic relations and differentiation of the homoeologous genomes. Results indicate that in species and hybrids with 2n = 20, there was chromosome pairing between the homoeologous A and B genomes with a maximum of 5IV, with the exception of Zea diploperennis and their interspecific hybrids where cryptic homoeologous chromosome pairing was not induced. In almost all 2n = 30 hybrids, observed cryptic pairing increased to a maximum of 10III although Z. mays x Z. mays with 2n = 30 did not show significant differences between treated and untreated materials. Pairing was also observed in species and hybrids with 2n = 40, in which a maximum of 10IV was observed, with the exception of Z. mays with 2n = 40 where treated and untreated cells did not differ significantly.This research was supported by the Universidad Nacional de la Plata, Universidad Nacional de Lomas de Zamora and CONICET.Molina, M.; Lopez, C.; Staltari, S.; Chorzempa, S.; Moreno Ferrero, V. (2013). Cryptic homoelogy analysis in species and hybrids of genus Zea. Biologia Plantarum. 57(3):449-456. doi:10.1007/s10535-012-0299-4S449456573Bass, H.W., Riera-Lizarazu, O., Ananiev, E.V.B., Bordolini, S.J., Rines, H.W., Phillips, R.L., Sedat, J.W., Agard, D.A., Cande, Z.W.: Evidence for the coincident initiation of homologous pairing and synapsis during the telomereclustering (bouquet) stage of meiotic prophase. — J. Cell Sci. 113: 1033–1042, 2000.Bozza, C.G., Pawlowsky, W.P.: The cytogenetics of homologous chromosome pairing in meiosis in plants. — Cytogenet. Genet. Res. 120: 313–319, 2008.Chikashige, Y., Haraguchi, T., Hiraoka, Y.: Nuclear envelope attachment is not necessary for telomere function in fission yeast. — Nucleus 1: 481–486, 2010.Dobley, J., Iltis, H.H.: Taxonomy of Zea (Gramineae). I. A subgeneric classification with key to taxa. — Amer. J. Bot. 67: 982–993, 1980.Dover, G.A., Riley, R.: The effect of spindle inhibitors applied before meiosis on meiotic chromosome pairing. — J. Cell. Sci. 12: 143–161, 1973.Driscoll, C.J., Darvey, N.L.: Chromosome pairing: effect of colchicine on an isochromosome. — Science 169: 290–291, 1970.Driscoll, C.J., Darvey, N.L., Barber, H.N.: Effect of colchicine on meiosis of hexaploid wheat. — Nature 216: 687–688, 1967.Feldman, M., Avivi, L.: Genetic control of bivalent pairing in common wheat. The mode of Ph1 action. — In: Brandham, P.E. (ed.) Kew Chromosome Conference III. Pp. 269–279. Royal Botanic Garden, London 1988.Feldman, F., Liu, B., Segal, G., Abbo, S., Levy. A.: Rapid elimination of low copy DNA sequences in polyploidy wheat: a possible mechanism for differentiation of homeologous chromosomes. — Genetics 147: 1381–1387, 1997.Fukunaga, K., Hill, J., Vigoroux, Y., Matsuoka, Y., Sanchez G., J., Liu, K., Bucker, E., Doebley, J.: Genetic diversity and population structure of teosinte. — Genetics 169: 2241–2254, 2005.Furini, A., Jewell, C.: Somatic embryogenesis and plant regeneration of maize/Tripsacum hybrids. — Maydica 40: 205–210, 1995.García, M.D., Molina, M. del C.: Embryo rescue and induction of somatic embryogenesis as a method to overcome seed inviability in Zea mays ssp. mays (2n = 40) × Zea mays ssp. parviglumis crosses. — Biol. Plant. 44: 497–501, 2001.García, M.D., Molina, M. del C., Caso, 0.H.: [Maize (Zea mays ssp. mays) plant regeneration from tissue culture and its applications in maize breeding.] — Rev. Fac. Agron. UNLP 68: 15–25, 1992. [In Spanish]Goluboskaya, I.N., Harper, L.C., Pawlowski, W.P., Schicnes, D.; Cande, W.Z.: The pam1 gene is required for meiotic bouquet formation and efficient homologous synapsis in maize (Zea mays L.). — Genetics 162: 1979–1993, 2002.González, G., Poggio, L.: Karyotype of Zea luxurians and Z. mays subsp. mays using FISH/DAPI, and analysis of meiotic behavior of hybrids. — Genome 54: 26–32, 2011.Harper, L., Golubovskaya, I., Cande, W.Z.: A bouquet of chromosomes. — J. Cell. Sci. 117: 4025–4032, 2004.Iltis, H.H., Benz B.F: Zea nicaraguensis (Poaceae), a new teosinte from Pacific coastal Nicaragua. — Novon 10: 382–390, 2000.Iltis, H.H.; Dobley J.: Taxonomy of Zea (Gramineae). II Subspecific categories in the Zea mays comple× and a generic synopsis. — Amer. J. Bot. 67: 994–1004, 1980.Jackson, R.C.: Polyploidy and diploidy: new perspectives on chromosome pairing and its evolutionary implications. — Amer. J. Bot. 69: 1512–1523, 1982.Jackson, R.C., Murray, B.G.: Colchicine-induced quadrivalent formation in Helianthus: evidence of ancient polyploidy. — Theor. appl. Genet. 64: 219–222, 1983.Jenczewski, E., Alix, K.: From diploids to allopolyploids: the emergence of efficient pairing control genes in plants. — Crit. Rev. Plant Sci. 23: 21–25, 2004.Jenkins, G., Chatterjee, R.: Chromosome structure and pairing preferences in tetraploid rye (Secale cereale). — Genome 37: 784–793, 1994.Molina, M. del C.: Estudios citogenéticos evolutivos del Género Zea. [Cytogenetic Study of Zea Genus Evolution] — PhD Thesis, Polytechnic University of Valencia, Valencia 2011. [In Spanish].Molina, M. del C., Chorzempa, S.E., García, M.D.: Meiotic pairing in the hybrid (Zea mays × Zea diploperennis) × Zea luxurians. — Maize Genet. Coop. Newslett. 79: 5–7, 2005.Molina, M. del C., García, M.D.: Influence of ploidy levels on phenotypic and cytogenetic traits in maize and Zea perennis hybrids. — Cytologia 64: 101–109, 1999.Molina, M. del C., García, M.D.: Meiotic pairing in the interspecific hybrid Zea mays, Z. perennis and Zea diploperennis. — Maize Genet. Coop. Newslett. 74: 42–43, 2000.Molina, M. del C., García, M.D.: Ploidy levels affect phenotype and cytogenetic traits in Zea mays ssp. mays (2n = 20 or 40) and Zea mays ssp. parviglumis hybrids — Cytologia 66: 189–196, 2001.Molina, M. del C., García, M.D., López C.G., Moreno Ferrero, V.: Meiotic pairing in the hybrid (Zea diploperennis × Zea perennis) × Zea mays and its reciprocal. — Hereditas 141: 135–141, 2004.Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. I. Evidence for five as the basic chromosomes number. — Theor. appl. Genet. 73: 542–550, 1987.Naranjo, C.A., Molina, M. del C., Poggio, L.: [Evidence of a basic number x = 5 in the genus Zea and its importance in studies of the origin of maize] — Acad. Nac. Cs. Ex. Fis. Nat. 5: 75–84, 1989. [In Spanish].Naranjo, C.A., Poggio, L., Molina, M. del C., Bernatene, E.: Increase in multivalent frequency in F1 hybrids of Zea diploperennis × Z. perennis by colchicine treatment. — Hereditas 120: 241–244, 1994.Poggio, L., Molina, M. del C., Naranjo, C.A.: Cytogenetic studies in the genus Zea. 2- colchicine-induced multivalents. — Theor. appl. Genet. 79: 461–464, 1990.Ruiz, C., Sanchez, J.J., Aguilar, S.M.: Potential geographical distribution of teosinte in Mexico: a GISH approach. — Maydica 46: 105–110, 2001.Santos, J.L., Lacadena, J.R., Cermeno, M.C., Orellana, J.: Nucleolar organizer activity in wheat-barley chromosome addition lines. — Heredity 53: 425–429, 1984.Santos, J.L., Orellana, J.: Pairing competition between identical and homologous chromosome in rye and grasshoppers. — Genetics 104: 677–684, 1983.Schnable, J.C., Freeling, M.: Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. — PLoS ONE 6–3: e17855. Doi:101371/journal.pone.0017855, 2011.Schnable, J.C., Springer, N.M., Freeling, M.: Differentiation of maize subgenome by genome dominance and both ancient and ongoing gene loss. — PNAS 108: 4069–4074, 2011.Sokal, R.R., Rohlf, Y.: Biometría. — W.H. Freeman and Company, San Francisco 1978.Swanson-Wagner R., Eichten S., Kumari S., Tiffin P., Stein J., Ware D., Springer N.: Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor. — Genome Res., in press, 2012.Swigonová, Z., Lai, J., Ma, J., Ramakrisma, W., Llaca, V., Bennetzen, J., Messing, J.: Close split of sorghum and maize genome progenitors. — Genome Res. 14: 1916–1923, 2004.Wendel, J.: Genome evolution in polyploidy, — Plant mol. Biol. 42: 225–229, 2000.Zickler, D., Kleckner, N.: The leptotene-zygotene transition of meiosis. — Annu. Rev. Genet. 32: 619–697, 1998
    • …
    corecore